Q $\lim _{x \rightarrow 0} \frac{\cos (\tan x)-\cos x}{x^{4}}=$
(A) $\frac{1}{6}$
(B) $-\frac{1}{3}$
(C) $-\frac{1}{6}$
(D) $\frac{1}{3}$

Q The value of $\lim _{x \rightarrow 0} \frac{(\sin x-\tan x)^{2}-(1-\cos 2 x)^{4}+x^{5}}{7\left(\tan ^{-1} x\right)^{7}+\left(\sin ^{-1} x\right)^{6}+3 \sin ^{5} x}$ equal to:
2 有
(A) 0
(B) 1
(C) 2
(D) $\frac{1}{3}$

Q Let $\mathrm{a}=\lim _{x \rightarrow 0} \frac{\operatorname{In}(\cos 2 \mathrm{x})}{3 x^{2}}, b=\lim _{x \rightarrow 0} \frac{\sin ^{2} 2 x}{x\left(1-e^{x}\right.}, c=\lim _{x \rightarrow 1} \frac{\sqrt{x}-x}{\ln x}$. Then
3 a,b,c satisfy. a,b,c satisfy :
(A) $a<b<c$
(B) $b<c<a$
(C) $a<c<b$
(D) $b<a<c$

Q $\lim _{x \rightarrow 0} \frac{\sin \left(\pi \cos ^{2}(\tan (\sin x))\right)}{x^{2}}=$ 4

(A) π
(B) $\frac{\pi}{4}$
(C) $\frac{\pi}{2}$
(D) None of these

Q If $f(x)$ is a thrice differentiable function such that,
$5 \quad \lim _{x \rightarrow 0} \frac{f(4 x)-3 f(3 x)+3 f(2 x)-f(x)}{x^{3}}=12$ then the value of $f^{\prime \prime}(0)$
(A) 0
(B) 1
(C) 12
(D) 15

Q If $f(x)=|\sin x-|\cos x||$, then $f^{\prime}\left(\frac{7 \pi}{6}\right)=$
6 =
(A) $\frac{\sqrt{3}+1}{2}$
(B) $\frac{1-\sqrt{3}}{2}$
(C) $\frac{\sqrt{3}-1}{2}$
(D) $\frac{-1-\sqrt{3}}{2}$

(A) $\left\{(2 n+1) \frac{\pi}{2}, n \in I\right\}$
(B) A null set
(C) $\{n \pi, n \in I\}$
(D) Set of all rational numbers
(C) Both one - one and onto
(D) Neither one - one nor onto

Q \quad If $_{e} f(x)=\log _{e} x$ and $g(x)$ is the inverse function
12 of $f(x)$, then $g^{\prime}(x)$ is equal to :
(A) $e^{x}+x$
(B) $e^{e^{e^{x}}} e^{e^{x}} e^{x}$
(C) $e^{e^{x}+x}$
(D) $e^{e^{x}}$

Rang of the function $f(x)=\log _{2}\left(2-\log _{\sqrt{2}}(16\right.$ $\left.\sin ^{2} x+1\right)$) is :
(A) $[0,1]$
(B) (b) $(-\infty, 1]$
(C)
(c) $[-1,1]$
(D) $(\mathrm{d})(-\infty, \infty)$

Q For a real number x , let $[\mathrm{x}]$ denotes the greatest integer less than or equal to x . let $f: R \rightarrow R$ be defined by $f(x)=2 x+[x]+\sin x \cos x$. Then f is
(A) One-One but not onto
(B) Onto but not oneone

Q . The true set of values of $>\mathrm{k}\rangle$ for which
$15 \sin ^{-1}\left(\frac{1}{1+\sin ^{2} x}\right)=\frac{k \pi}{6}$ may have a solution is :
(A) $\left[\frac{1}{4}, \frac{1}{2}\right]$
(B) $[1,3]$
(C) $\left[\frac{1}{6}, \frac{1}{2}\right]$
(D) $[2,4]$
(A) $-\sqrt{\frac{\pi}{2}}$
(B)
(C) 0
(D) $\sqrt{\frac{\pi}{4}}$

Q Let $\mathrm{g}_{(x)}$ be the inverse of $f(x)$ such that $f^{\prime}(x)=\frac{1}{1+x^{5^{5}}}$
$9 \quad$ then $_{\underline{d^{2}(g(x))}}$ is equal to : then $\frac{d^{2}(g(x))}{d x^{2}}$ is equal to :
(A) $\frac{1}{1+(\underline{g}(x))^{5}}$
(B) $\frac{g^{\prime}(x)}{1+(g(x))^{5}}$
(C) $-2+\sqrt{4-x}$
(D) $-2-\sqrt{4-x}$

Q If $f:(-\infty, 2] \rightarrow(-\infty, 4]$ where $f(x)=x(4-x)$, then
$16 f^{-1}(x)$ is given by :
(A) $2-\sqrt{4-x}$
(B) $2+\sqrt{4-x}$

Q The range of function $f(x)=[1+\sin x]+\left[2+\sin \frac{x}{2}\right]+[3+\operatorname{sig}: A \rightarrow A$ satisfies $g(1)=3$ and . $f 0 \mathrm{~g}=\mathrm{gof}$, then $\mathrm{g}=$
(A) $\{(1,3),(2,1),(3,2),(4,4)(B)\{(1,3),(2,4),(3,1),(4,2)\}$
(A) $\left\{\frac{n^{2}+n-2}{2}, \frac{n(n+1)}{2}\right\}$
(B) $\left\{\frac{n(n+1)}{2}\right\}$
(C) $\{(1,3),(2,2),(3,4),(4,3)(1)\{(1,3),(2,4),(3,2),(4,1)\}$
(C) $\left\{\frac{n(n+1)}{2}\right\}, \frac{n^{2}+n+2}{2}, \frac{n^{2}+n+4}{2}$ (D)
D) $\left\{\frac{n(n+1)}{2}, \frac{n^{2}+n+2}{2}\right\}$
Q The function $f(x)=\left\{\frac{\left(x^{2 n}\right)}{\left(x^{\left.2 n_{\operatorname{sgn}} x\right)^{2 n+1}}\right.}\right\}$.

$$
\left(\frac{e^{\frac{1}{x}-e^{-\frac{1}{x}}}}{e^{\frac{1}{x}}+e^{-\frac{1}{x}}}\right) \quad x \neq 0_{n \in N}
$$

(A) Odd function
(B) Even function
(A) $f(x)=x \sin y+y \sin x$
(B) $f(x)=x e^{\frac{y}{x}}+y e^{\frac{x}{y}}$
(C) $h(x)=\frac{x y}{x+y^{2}}$
(D) $\phi(x)=\frac{x-y \cos x}{y \sin x+y}$
(C) Neither odd nor even function

Q which of the following function is periodic with
19 fundamental period π ?
(A) $\begin{aligned} & f(x)=\cos x+\left[\left|\frac{s i x x}{2}\right|\right] \\ & \\ & ; \text { where }[.] \text { denotes }\end{aligned}$
greatest integer
function
(B) $\mathrm{g}(x)=\frac{\operatorname{six} x+\sin 7 x}{\cos x+\cos 7 x}+\left.24 \sin x\right|^{\text {then }} f^{-1}(x)$ is :
(A) $\frac{\sqrt{x-1}}{3}$
(B) $\frac{1}{3} \sqrt{x}-1$
(C) $h(x)=\{x\}+|\cos x|$; where $\{$.$\} denotes$ fractional part
(D) ${ }_{\phi}(x)=|\cos x|+\operatorname{In}(\sin x)$
(C) f^{-1} does not exist
(D) $\frac{\sqrt{x-1}}{3}$
Q
which of the following is closest to the graph of $y=\tan (\sin x), x>0$?

(A)

(B)

(A) $f(x)$ is bijective
(B)
(C)

(D)

(C) $f(x)$ is not injective but surjef $f(x)$ is neither injective nor surjective

Q The complete set of x in the domain of function
Q Let $\mathrm{g}(x)$ be the inverse of $f(x)=\frac{2^{x+1}-2^{1-x}}{2^{x}+2^{-x}}$ then $\mathrm{g}(x)$
be :
(A) $\frac{1}{2} \log _{2}\left(\frac{2+x}{2-x}\right)$
(B) $-\frac{1}{2} \log _{2}\left(\frac{2+x}{2-x}\right)$
(C) $\log _{2}\left(\frac{2+x}{2-x}\right)$
(D) $\log _{2}\left(\frac{2-x}{2+x}\right)$

Q Let $\mathrm{A}=\{1,2,3,4\}$ and $f: A \rightarrow A$ satisfy
$f(x)=\sqrt{\log _{x+2}\left([x]^{2}-5[x]+7\right)}$ (where [.] denote greatest integer function and $\{$.$\} denote fraction part$ function) is :
(A) $\left(-\frac{1}{3}, 0\right) \cup\left(\frac{1}{3}, 1\right) \cup(2, \infty(B)(0,1) \cup(1, \infty)$
(C) $\left(-\frac{1}{3}, 0\right) \cup\left(\frac{1}{3}, 1\right) \cup(1, \infty)^{\text {D) }}\left(\frac{1}{3}, 0\right) \cup\left(-\frac{1}{3}, 1\right) \cup(1, \infty)$
$22 f(1)=2, f(2)=3, f(3)=4, f(4)=1$. suppose

